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Lengthscale dependence of dynamic four-point susceptibilities in glass formers
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Dynamical four-point susceptibilities measure the extent of spatial correlations in the dynamics of glass
forming systems. We show how these susceptibilities depend on the lengthscales that necessarily form part of
their definition. The behavior of these susceptibilities is estimated by means of an analysis in terms of renewal
processes within the context of dynamic facilitation. The analytic results are confirmed by numerical simula-
tions of an atomistic model glass former, and of two kinetically constrained models. Hence we argue that the

scenario predicted by the dynamic facilitation approach is generic.
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I. INTRODUCTION

The lengthscales governing dynamical heterogeneity in
glass-forming liquids [1-5] are often described in terms of
the susceptibility associated with fluctuations in the self-
intermediate scattering function [4,6-9]

k1) =+ (6 (0 6F (k). o)
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Here the indices j and [ run over the N particles in the sys-
tem, the position of the jth particle at time ¢ is 7(1);

5ﬁ/(k,t) = k7 (0-F(0)] _ <eik-[r‘_,v(t)—r”,-(0)]>’ (2)

and k=|k|. Under supercooled conditions, this four-point cor-
relation function typically grows in time towards a peak,
before decreasing at large times. This nonmonotonic behav-
ior is a consequence of the transient nature of dynamic het-
erogeneity.

It was suggested by Toninelli et al. [8] that the time de-
pendence of x4(k,t) can be used to distinguish between dif-
ferent theoretical scenarios for the glass transition. The de-
pendence of x4(k,) on the wave vector k was considered for
a glass-forming system in Ref. [10], and for a sheared granu-
lar material in Ref. [11]. In both cases, significant depen-
dence on wave vector was found. In this article, we investi-
gate this wave vector dependence, in particular the way that
xa(k,r) grows towards its peak. We present data for an ato-
mistic system, and for two kinetically constrained models
[12]. We find nontrivial wave vector dependence in all three
cases. We explain this generic behavior analytically using a
treatment that we used earlier to describe dynamic decou-
pling in glass formers [13-15].

Our analysis shows that the nontrivial behavior of four-
point correlators comes from two sources. The first contribu-
tion arises because particles that have not moved are clus-
tered in space; the second comes from correlations between
particle displacements. The relative sizes of these contribu-
tions depend on the wave vector k. The first dominates when
k is large, and the second dominates when k is small. The
crossover between these two regimes corresponds to the
crossover between non-Fickian and Fickian regimes ob-
served in two-point functions [15].
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Figure 1 illustrates the behavior that we consider for three
different model systems. These systems, described in detail
in Secs. III and IV, represent three levels of coarse-graining
in the glassy system. The most detailed is a fluid mixture of
classical particles in continuous three dimensional space, in-
teracting with Weeks-Chandler-Andersen (WCA) potentials
[16,17]. The second is the so-called (2)-TLG (triangular
lattice gas), due to Jickle and Kronig [18]. It is a kinetically
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FIG. 1. (Color online) The distinct part of y,(k,?) as a function
of ¢ for two wave vectors in three model systems: the supercooled
three-dimensional WCA mixture (a); a kinetically constrained trian-
gular lattice gas (b); and probes in the one-dimensional

Fredrickson-Andersen model (c). The symbol Xjelf(k,t) denotes

(|8F(k,1)|?). Full details are presented in the relevant sections be-
low. Dashed and dotted lines show that in all cases the exponents of
power law fits increase with decreasing wave vector. The largest
wave vectors considered are the principal wave vectors for each
system (for the WCA case this is the peak location in the equilib-
rium structure factor ).
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constrained lattice gas in which the dynamics are highly co-
operative and relaxation times increase very quickly with
increasing density. The final system is the one dimensional
one spin facilitated Fredrickson-Andersen (FA) model [19]
to which probe particles have been added, following Ref.
[13]. The probe particles do not interact with one another, but
they propagate through an environment that is dynamically
heterogeneous. In this model, all of the atomistic interactions
have been removed, leaving only an idealized dynamically
heterogeneous system.

The similarity of y.(k,7) between these three different
model systems is striking. The four-point susceptibility has
the usual single peak, and the increasing part of each curve
can be fitted by a power law. In all three cases, the exponent
with which x,(k,) increases depends strongly on k. Further,
all cases exhibit a shift of the peak of y.(k,7) to later times as
k decreases.

II. THEORY OF FOUR-POINT FUNCTIONS
IN HETEROGENEOUS SYSTEMS

A. The dynamical facilitation approach

Our starting point is to follow [15] and write

Fk.1) = explik - AF,(0)] = p,(1) +[1 - p, () Jexplik - A7,(0)],
(3)

where A7(1)=F(1)-F,(0) and p(r) is the local persistence
operator. That is, p;(r) takes the value of unity if particle j
has not moved a distance greater than some microscopic cut-
off ay, and it is zero otherwise. We use hats throughout this
article to denote fluctuating quantities (operators).

The usefulness of Eq. (3) lies in the fact that the two
terms separate mobile and immobile particles, explicitly ac-
counting for the dynamical heterogeneity in the system. The
expectation of each term can be simply evaluated in an ap-
propriate Gaussian, or homogeneous, approximation, leading
to

Fy(k,1) = (ﬁj(k,t)) ~ P(t) +[1 - P() Jexp(—= k*D1), (4)

where P(t) is the average persistence function P(t)=(p;(1))
and D is the self-diffusion constant. The approximate equal-
ity is valid [15] in the deeply supercooled regime of large
decoupling between a-relaxation time and diffusion rate
[20]. According to this approximation, particle motion is a
random walk with randomly distributed waiting times [21].

Moving from two point to four point functions, we con-

sider the correlator Gﬂ(k,t):<51:" (k1) SF (=k,1)), where
SF j=ﬁ ;—F was defined above. The diagonal (self) part is

Gj(k,1))=1=F(k,0)*. (35)

It grows monotonically with time and is always smaller than
unity. Nontrivial spatial correlations of the dynamics appear
in the off-diagonal terms j # [. Using Egs. (3) and (4), these
correlations are
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Gk, 1) = (1= P> 5p (1) 5p (1))
+ [1 _ P(t)]2<5eik~ArAj(z)5e—ik~Af,(z)>, (6)

where &p;=p;—P and ek A0 = gk A7) _ oDl We have
dropped terms that are cubic and quartic in the fluctuations
since we expect their contributions to be small.

To arrive at the four-point susceptibility, we must sum
over j and [. The first term of Eq. (6) is the susceptibility of
the persistence, and we have

%E (8p(1)6p,(1)) = N,() P(t)[1 - P(1)]. (7)
jl

Here we have assumed that excitations propagate through the
system leading to movement of particles [13], and that the
average number of particles visited by a single excitation in
time ¢ is N,(¢). This number is related to the dynamic corre-
lation length of relaxed clusters of particles through an ex-
ponent representing their (possibly fractal) dimensionality.
N,(t) is also is related to the average persistence: a molecule
will typically persist after time ¢ if there were no excitations
initially in a surrounding region of mass N,(7); the probabil-
ity for this to happen is P(r)=e ¥\, where ¢< 1 is the
average concentration of excitations. The calculation of the
average of the product of the persistence is analogous: for
p;p; to be nonzero after time 7 a mass N,(¢) has to be free of
excitations initially around j and /. The fact that these two
volumes may overlap gives rise to spatial correlations be-
tween p; and p;. Following similar arguments to those used
in Ref. [8] one arrives to Eq. (7).

While the contribution to y,(k,z) from Eq. (7) measures
whether nearby particles relax in a correlated way, the sec-
ond term of Eq. (6) measures correlations in the displace-
ments of particles that have relaxed. We define the correla-
tion function for particle displacements in the following way:

g(r.0) = (AR (1) - AF(0)), . (8)

where the average is conditioned on the initial separation of
the particles r;;=[r;(0)—r,(0)|. This function g(r,) measures
the correlations between displacements of nearby particles.
For simple Brownian motion, the separation of a pair of par-
ticles diffuses four times as fast as their center of mass. If
g(r,t) is positive, then the separation diffuses more slowly
than this reference value; if it is negative then the separation
diffuses faster. If two particles move through the system fa-
cilitated by the same excitation then their separation remains
relatively small, while their centre of mass moves a long
way. We show the resulting positive g(r,t) for a simple ki-
netically constrained model in Fig. 6 (below).
Within the Gaussian approximation, we arrive at

( SeikAri(0) 5e—ik.Af1(t)> ~ e—2k2Dz( eZtkzg(r,z) -1).

rﬂ:r
The Gaussian approximation is justified because particles
have made many diffusive steps. The sum over particles at a
given time ¢ is dominated by pairs of particles whose initial
separation coincides with the maximum of g(r,z). This leads
to a contribution to yu(k,f) of
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where g(f)=max,[g(x,t)] obeys g(r) <D and decreases at
large times. We have assumed that the sum over j is domi-
nated by particles for which g(r,7) =g(¢), and we denote the
number of these particles by N,(). The summand is expo-
nential in tg(r, 1), so this is a good approximation when that
function is large. In the excitation picture we only expect
strong displacement correlations when two particles are fa-
cilitated by the same excitation, so we expect N (1) <N, (t) in
general.

Putting the results of Egs. (5)—(7) and (9) together we
arrive at the four-point susceptibility

Xa(k,t) = N, (DP(O[1 = P()](1 — ™ P")>
+N,(0[1 - P([)]ze—ZkZDl(eZtkzg_(t) ~1)
+ 1= F(k,1)% (10)

Thus, correlations between particles come from persis-
tence correlations [first term in Eq. (10)] and from displace-
ment correlations [second term in Eq. (10)]. Both contribu-
tions are nonmonotonic in time. The persistence contribution
peaks at a time ., that scales as #,., ~ 7,, Where 7, is the
structural relaxation time. This term is relevant if k is large.
Conversely, the second term in Eq. (10) dominates at small k,
when Dk?7,< 1. The peak of this term occurs at Tpeak
~ (DKk?)™!, and so increases with decreasing k, while its peak
height decreases as g(fyea)-

Equation (10) is consistent with the data of Fig. 1. As well
as the overall form of x4, it contains two main predictions.
First, for a given wave vector y,(k,7) peaks at a k-dependent
time Z,cq- The scaling of this time is the same as that of the
time scale of two-point correlators [15]. It increases with
decreasing k, consistent with simulations. A corollary is that
x4(k,r) may display a non-trivial structure even for wave-
lengths at which the corresponding one-particle motion is
Fickian.

Secondly, the increase of y4(k,f) depends on the wave
vector k: from above, we have for large k

Xalk,t) ~ Ny(0)[1 = P(1)], Dkt > 1 (11)
and for small &
xalk,t) ~ N(O[1 - P()Pg()k’t, Dt < 1. (12)

The two relations come from persistence (large k) and dis-
placement correlations (small k). These two scaling predic-
tions are different in general: we argue that this accounts for
the variation with k at early times that was demonstrated in
Fig. 1. Within the simplest picture of facilitation, N,(7) is the
fundamental object: it measures the number of particles
whose relaxation is facilitated by a single mobility excita-
tion. At this minimal level of theory, and for small times (¢
< <7,), we expect the number of particles that have relaxed
to be N.N,(#), where N, is the number of mobility excita-
tions; it follows that [1—P()]~N,(z). Of the N, particles
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facilitated by a single excitation, we expect a finite fraction
to have strong displacement correlations: this finite fraction
is N,/N,,. If this assumption holds then N,(7) and N,(r) will
have the same scaling with time and temperature.

Following Toninelli et al. [8], we define an exponent u by
x4(f) ~t*. The observation of Ref. [8] is that =5, where b
is the von-Schweidler [-relaxation exponent of mode-
coupling theory (MCT) [22]. Equation (10) shows clearly
that u depends on wave vector u=u(k); however, MCT pre-
dicts a dynamical critical point at which b is independent of
k [22] (see nevertheless the discussion in Ref. [23]). In su-
percooled liquids, no such phase transition is observed, and
the system is always in the ergodic phase. Hence, all corre-
lation lengths are finite, and the scaling relation p==b breaks
down for wave vectors smaller than the inverse correlation
length. This effect can be investigated by direct numerical
solutions of the MCT equations [24,25], but agreement with
simulation is still poor for small wave vectors. This is con-
sistent with the hypothesis that processes neglected by the
mode coupling approximation are important for the structural
relaxation of supercooled liquids, leading to avoidance of the
dynamical transition; to the decoupling of diffusion and vis-
cosity [25]; and to nontrivial wave vector dependence of two
and four-point correlations on large lengthscales.

B. Related four-point functions

The function

G,k,q.1) = %El (SF (k1) S (~ k1) 7 O-1O)y,
J

generalizes yu(k,t). Clearly x4(k,t)=G4(k,0,t). However,
G,(k,q=0,1) is ensemble dependent (see, e.g., Ref. [26]),
whereas lim,_,oG4(k,q,t) is not. For the WCA mixture and
the (2)-TLG we have found that the ensemble dependence
affects the absolute value of y,(k,) but not their functional
trends. The differences in y4(k,t) between ensembles can be
calculated in terms of thermodynamic properties and deriva-
tives of F((k,t) [27]. Berthier et al. [26] suggest that these
differences provide reliable estimates of lim,_,G4(k,q,1) it-
self. For the WCA mixture and (2)-TLG, in the regimes ac-
cessible to our simulations, we find that these differences
also have an important k£ dependence, and that they only
account for a fraction of the total value of lim,_,G,(k.q,1).
This is discussed in detail in the Appendix.

An alternative (ensemble dependent) four point function
is

e = T3 (M @nsit ), (13)
ji

where 8M;=M,;—(M,) in which M;(a,?) is a (binary) operator
that equals unity if |#,(£)—7#,(0)| <a and zero otherwise.
The operator M(a,?) was used, for example, in Ref. [10].
Its ensemble average, Mu(t)E(M i(a,1)), is the fraction of
particles that have not moved beyond a distance a in time ¢,

and is related to the self-intermediate scattering function by
Ma(t) :(277)_df|r|<addrfddke_lk'rFs(kst)'
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FIG. 2. (Color online) (a), (b) Self-intermediate scattering functions F,(k,) in the WCA mixture for wave vectors k=g, and k=qy/4 (g,
is the wave vector of the first peak in the structure factor). (c), (d) Corresponding four-point susceptibilities x4(k,?).

Our analysis of y4(k,?) generalizes immediately to x,,: we
write

Mj(a,0) = p() +[1-p,(0]O(a— [AR1)]),  (14)
where ©O(x) is the Heaviside function. The difference be-
tween the operators M i(a,t) and F i(k,1t) is that the phase of

F (k1) records the direction of motion of the jth particle. For
small a, correlations between the directions in which mobile
particles have moved do not contribute to x,,(a,r) and we
expect it to be dominated by the persistence correlations

xula,0) = f(Dla®)N,() P(0[1 - P(1)], (15)

where f(x)=(477Dt)“1[f‘,‘<ad"re“"2/(D’)]2. The structure is
the same as the first term of Eq. (10) with f(Dt/a?) playing

the part of (1—e"2F")2, We note also that x,,(a, ) approaches
the contribution of Eq. (7) as a gets small, as expected. We
compare this prediction with atomistic simulations in Sec.
11, see below.

III. ATOMISTIC SIMULATIONS

For a continuous atomistic representation of a super-
cooled liquid, we carried out extensive molecular dynamics
simulations of a symmetric WCA mixture [16]. It is a mix-
ture of two particle species A and B in three spatial dimen-
sions. The potential energy is the sum of the pairwise inter-

actions between two particles of species a and B, V,4(r)
=48[((raﬁ/r)12—((raﬁ/r)6+ 1/4] if r= 21/60'aﬁ, and V,4(r)
=0 otherwise. This is the reference potential of the WCA
theory [17] consisting of the repulsive part of the Lennard-
Jones interaction. Following [10,28] we choose o44=1,
O-BB:5/6’ O'AB=(O'AA+0'BB)/2, mB=mA/2=l, and e=1.
Lengths, times, and temperatures are given in units of oy,
\r’mBo'i 4/€, and &/kg, respectively; we use g, to denote the
wave vector of the first peak in the structure factor. In our
simulations the total number of particles was N=8000, with
N,=Nz=4000. The use of the WCA reference potential
makes this system computationally more efficient to simulate
than the original Lennard-Jones one of Ref. [28]. A detailed
study of the dynamics in the supercooled regime of this
WCA mixture will be presented elsewhere [29]. The molecu-
lar dynamics simulations of this section conserve energy, and
we use a range of energies at each temperature. This allows
estimates of both canonical and microcanonical susceptibili-
ties. Details are given in the Appendix ; the data of Figs. 2-4
is for the canonical susceptibility.

Figure 2 shows the self-intermediate scattering function
F(k,t) at various temperatures 7=0.5 to 0.36, for the wave
vector of the first peak of the structure factor k=g, and for a
smaller wave vector k=gq,/4. At the lowest temperature
shown, 7=0.36, the system is clearly in the supercooled re-
gime, dynamics is heterogeneous, and the self-diffusion con-
stant exceeds the value expected by the Stokes-Einstein re-
lation by over an order of magnitude [29]. The four-point
susceptibilities have the expected behavior, becoming larger
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FIG. 3. (Color online) (a) Self-intermediate scattering functions F(k,) in the WCA mixture at 7=0.36, for wave vectors

self,

k=2q0,90,90/2.90/4,40/8. (b) Corresponding four-point susceptibilities x,(k,?). (c) Distinct part x4(k,t)—x3 (k,r). (d) Distinct part nor-

self

malized by the self-term y,(k,1)/ x5 (k,1)—1.

and peaking later the lower the temperature, as shown in the
lower panels of Fig. 2.

Figure 3 concentrates on the lowest temperature we simu-
lated, T=0.36. It shows the two point function F(k,z) for
various wave vectors k. The growth of the distinct part of x4
towards its peak can be fitted by a power of ¢. The fitted
exponent is smaller than 1 for wave vectors near g, but
closer to 1.5 for small k. The former result coincides with
what was observed in similar systems [8], but the latter was
not anticipated before. Interestingly, a similar & dependence
has been observed experimentally in a sheared granular ma-
terial [11].

In Sec. II, we assumed that x,,(a,?) is dominated by per-
sistence correlations for small a, where displacement corre-
lations are unimportant. At small times, the effect of increas-
ing a is to reduce the susceptibility. This is analogous to the
effect of decreasing k in y4(k,z). On the other hand, the k
dependence of the peak in y,(k,r) arises from the displace-
ment correlations and will be absent (or at least much
weaker) in xy(a,r). Both these predictions are consistent
with the data of Fig. 4, calculated in the atomistic system of
Sec. III. However, we note that the relative range of a over
which we have measured x,,(a,?) is smaller than the range
of k used for y,(k,r). It may be that particle displacement
correlations will be important at larger a. This effect can be
estimated within the framework of Sec. II. It appears as an
extra term in Eq. (15).

WCA, d=3, T=0.36
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FIG. 4. (Color online) (a) Two point overlap correlators M (t) in
the WCA atomistic model at temperature 7=0.36. (b) Correspond-
ing four point susceptibilities x,(a,1).
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FIG. 5. (Color online) (a) Self-intermediate scattering function
Fy(k,t) of particles in the (2)-TLG model, at density p=0.8, for
wave vectors k=, /2, w/4,w/8,7w/16,1/32, 7/ 64 (lower to up-
per curves). (b) Susceptibilities y4(k,7) for the self-correlators of
the top panel (upper to lower curves). For large k, x4 grows with an
exponent close to 0.7, for small k with an exponent close to 1.5. The
inset shows the normalized function y,/x; 1 in the same scale as
the main panel.

IV. KINETICALLY CONSTRAINED MODELS
A. Kinetically constrained lattice gas

The kinetically constrained lattice gases of Jickle and
Kronig [18] provide simple caricatures of supercooled lig-
uids. We consider the (2)-TLG in which hard core particles
move on a triangular lattice: movement between sites and i
and j is allowed only if both the mutual neighbors of sites i
and j are empty. Relaxation in the model involves strongly
cooperative motion and the relaxation time increases very
rapidly with increasing density.

We show correlation functions in Fig. 5. We plot the self-
intermediate scattering functions for particles at a high den-
sity p=0.8; we use wave vectors from k=1 to k=/64 (for
details see Ref. [30]). We note that the exponents governing
the growth of y4(k,?) in the (2)-TLG are rather similar to
those in the atomistic system. These four-point functions are
measured at constant density.

B. Fredrickson-Andersen (FA) model

The one-spin facilitated Fredrickson-Andersen (FA)
model represents the extreme of coarse graining in which

PHYSICAL REVIEW E 74, 051501 (2006)
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FIG. 6. (Color online) (a) Self-intermediate scattering function
F(k,t) of probes embedded in an FA model in d=1, at temperature
T=0.5, for wave vectors k=a,m/11,7/31,7/51,7/71,7/91
(lower to upper curves). The inset shows the susceptibility of the
persistence given in Eq. (7) (dot-dashed) and the quantity N,(r)
(full), which grows approximately as ' (dashed). (b) Susceptibili-
ties yu(k,1) for the self-correlators of the top panel (upper to lower
curves). We show the nontrivial part, with the self-term Xfflf(k,t)
removed. y, for k= follows the contribution of Eq. (7) (dot-
dashed). For large k, x4 grows with an exponent close to 1, for
small k with an exponent close to 1.5. The inset shows the function
g(r,1), see Eq. (8), for inter particle distances r=0,1,2, in the same
temporal scale as the main panel.

one conjectures that the only variables relevant for heteroge-
neity are binary labels for regions in which mobility is
present. It is the simplest kinetically constrained model dis-
playing both dynamic heterogeneity [4] and decoupling [13].
The system is a one dimensional chain in which mobile re-
gions are represented by up spins and immobile regions by
down spins. The energy of the system is simply the number
of up spins: spins flip with Metropolis rates if and only if at
least one neighboring spin is up.

In order to consider particle motion in such a system, we
couple probe particles to the spins as in Ref. [13]. Probes can
hop only between adjacent mobile sites and such moves are
attempted with rate unity. Probes do not interact with one
another (more than one probe may occupy a single site). The
stationary distribution of probes is uniform and uncorrelated
with the spin variables.

Figure 6(a) shows the self-intermediate scattering func-
tions of probe molecules in the FA model at a low tempera-
ture 7=0.2 for various wave vectors (the ensemble is again
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FIG. 7. (a) Figure showing x4(k,r) in the (2)-TLG at
p=0.77 and k=m/2 in both canonical and grand canonical
ensembles, together with the difference term A)(g’“ ) (k,n)=p*(1-p)
X[9F(k,1)/dp]*>. The contribution of A Xi” k1) to
Xi" )(k,t) is comparable to that of XE‘N)(k,t). (Inset, a) Illustration
that the grand canonical susceptibility satisfies the relation (A2).
The scales are those of the main panel. (b) Similar data in the
(2)-TLG at k=1r/16. For smaller wave vectors, such as these, the
difference term dominates the peak of the grand canonical suscep-
tibility. (Inset, b) Two contributions to the grand canonical suscep-
tibility: [see Eq. (A4)]. At early times, the susceptibility is domi-
nated by the ensemble independent sine part, while the peak is
dominated by the cosine part. The scales are again those of the main
panel.

that in which the probe density is constant). For large wave
vector the self-correlator is stretched and tracks the persis-
tence function, while for small enough wave vectors self-
correlators become exponential, according to Eq. (4) (see
Ref. [15] for details). The inset shows the time dependence
of N,(t), as extracted from the susceptibility of the persis-
tence, see Eq. (7). Figure 6(b) shows the corresponding sus-
ceptibilities y,(k,r). We note that the exponent governing the
increase of y,(k,f) is near to unity for large k, as reported in
Ref. [8]; however, the exponent at small k is closer to 1.5. In
the notation of Eq. (11) we have N,(1)~[1-P(1)]~1"* at
large k which accounts for the exponent of unity in that
regime. The inset to the bottom panel shows the function
g(r,1), for r=0,1,2. As r increases the distance r over which
these correlations are significant also increases. This is con-
sistent with our assumption of an increasing function N,(z) in
Sec. II.
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FIG. 8. (a) Figure showing four point susceptibilities in the
WCA mixture at 7=0.36 and k=g, and the difference term
Axf‘T)(k,t). The difference term is significantly smaller than the ca-
nonical susceptibility. (b) Similar data at k=¢,/8. In this case the
difference term exceeds the microcanonical susceptibility. The data
is consistent with the exact relation (A10).
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APPENDIX: ENSEMBLE DEPENDENCE OF yx,

Recently, Berthier er al. [26] suggested that the difference
between y4(k,t) in two different ensembles provides a good
estimate of the value of x,(k,?) itself. In this Appendix we
discuss the ensemble dependence of the four point suscepti-
bility in the models that we consider. Not surprisingly, we
find that the difference in y,(k,r) between ensembles has a
significant wavelength dependence. At the lowest tempera-
ture we simulated for the WCA mixture, and the highest
density for the (2)-TLG, we find that the method of Ref. [26]
does not give accurate numerical estimates of the suscepti-
bility, although it does give the correct order of magnitude
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for x,(k,t) at times for which that function is near its maxi-
mum, the estimate working better for smaller k than for
larger k. It would be interesting to see whether the estimate
of Ref. [26] becomes better or worse with decreasing tem-
perature, but this is beyond the scope of this Appendix.

In terms of Eq. (1), the ensemble dependence of x,(k,?) is
contained in the definition of the average required by the
angle brackets. This average is over any stochasticity in the
dynamics, and over an initial condition that is specified by
the choice of ensemble. The key point is that x,(k,z) mea-
sures fluctuations in an observable that couples with equal
weight to every particle in the system. So the presence of a
global constraint (on the total energy of the system, for ex-
ample) suppresses these fluctuations. By contrast, the quan-
tity G4(q,k ,t) measures fluctuations on finite lengthscales, as
long as k and ¢ are both finite. In that case, taking the ther-
modynamic limit leads to a value of G,(q,k,t) that is inde-
pendent of global constraints.

The effect of global constraints on y,(k,f) can be mea-
sured directly in the (2)-TLG, by considering the susceptibil-
ity in both canonical and grand canonical ensembles. We
denote the canonical susceptibility by XEN)(k,t), which is de-
fined as in Eq. (1), with the averages over the dynamics, and
over all initial conditions with exactly N particles. For grand
canonical systems, we promote N to a fluctuating quantity
(operator), and write

N
Wk =N\ | 2 [Fik,t) - k01| ), (A1)
j=1

where the average is over the dynamics, and over initial con-
ditions with all particle numbers, with weights set by the
chemical potential wu.

These susceptibilities are related to each other by [27]

B(k,1) = XMk, 1) + Ax P (k,1), (A2)
2
AP k) = pv<<5p>2>{%l’j”)] L)

where p is the density and V the volume of the system;
the average is grand canonical. The density fluctuations
of the (2)-TLG are those of a lattice gas, so that
V{(8p)H)=p(1-p).

The relative sizes of the two terms on the right hand side
of Eq. (A2) depend on the strength of the coupling of the
dynamics to density fluctuations in the system. Berthier et al.
argued [26] that the second term tends to dominate the grand
canonical susceptibility in a thermal glassy systems. Since
the thermodynamic properties of the (2)-TLG system are
trivial, x,(k,7) can be measured in both ensembles, and the
prediction for the difference can also be evaluated. Results
are shown in Fig. 7, at a high density p=0.77. The difference
between ensembles is consistent with the predlctlon of Eq.
(A2). We find that the two contributions to X (k 1) are of
similar size for large wave vectors, while the second term
dominates at small wave vectors. In both cases, the form of
the second term is similar to that of X (k t) for times near
the peak of the susceptibility.
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Our definition of y,(k,?) includes both the sine and cosine
parts of the operator F (k,t)=cos[k-AF(1)]+i sin[k-AF(1)],
leading to two contributions to y,(k,t). That is,

xXa(k,t) = X525 (k1) + X3 (ks 1), (A4)

with
X5k t) = (N)~ <{2cos[k-Afj(t)]—Fs(k,t)}2>,

(AS)

X3k, 1) = (N)~ <{2 sin[k - Afj(t)]}2>, (A6)
J
The fluctuations in the sine part are ensemble independent,
since the average of this part is zero. Hence, the difference
term AX(“ )(k,1) is bounded above by the cosine part of
(k t); it follows that the difference term is qualitatively
dlfferent from the total susceptibility when the total suscep-
tibility is dominated by the sine part. This is the case at small
wave vectors and small times, as shown in the inset of the
lower panel of Fig. 7.

We can make a similar analysis of the WCA mixture. For
each temperature, the data of Sec. III was obtained using
microcanonical simulations at eight different values of the
energy, sampled from the appropriate canonical ensemble.
This allows estimates of both mlcrocanomcal and canomcal
susceptibilities, which we denote by )( (k 1) and x, )(k 1),
respectively. The microcanonical susceptibility for a given
energy is given by Eq. (1), with microcanonical averages
throughout. In particular, we must use

5ﬁj(k’ t) = ﬁj(ka t) - <ﬁj(k’t)>microcanonical’

where the average involves data at a smgle energy. Having
used this prescrlptlon to calculate X4 (k t) for each energy,
we then average x, )(k t) over the eight representatlve ener-
gies at each temperature. Since the fluctuations in Yy, )(k 1)
itself are small, the resulting average is an unbiased estimate
of the microcanonical susceptibility at the (canonical) aver-
age energy associated with that temperature. For the canoni-
cal susceptibility, we use Eq. (1), with canonical averages
throughout, including

(A7)

5ﬁj(k,t) = ﬁj(ks t) - <ﬁj(k’t)>canonical' (AS)

We estimate canonical averages by averaging over the data
from the eight energies that are representative of the relevant
temperature.

The canonical and microcanonical susceptibilities satisfy
[27]

xPk,1) = XE (k1) + Ax Pk, 1), (A9)

AXP(k,1) = (kT cy)(IF (k,0)/3T)?, (A10)

where cy is the specific heat per particle at constant volume.
The behavior of cy that we have computed for the WCA
mixture is unremarkable. It rises slowly with lowering tem-
perature, indicative of mean-square potential energy and ki-
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netic energy fluctuations that are virtually independent
of temperature over the lowest temperatures we have
considered.

We show results for both susceptibilities in Fig. 8,
together with an estimate of A )(E‘T)(k,t). [In evaluating
A XiT)(k, t), the derivative and specific heat are evaluated by a
finite difference analysis of the temperature dependence of
the the mean energy and F(k,7).] The data is at the low
temperature 7=0.36. At large &, XET) (k,1) is not saturated by
the difference term A)(iT) (k,?). Instead the microcanonical
contribution is larger. However, at smaller k, the difference
term exceeds the microcanonical part for times near the peak.
Just as in the (2)-TLG, the difference term becomes more
significant at smaller k, and at later times. Since the size of
the difference term reflects coupling between energy fluctua-
tions and dynamics, it would appear that motion over large

PHYSICAL REVIEW E 74, 051501 (2006)

distances couples strongly to the local value of the energy
while local rearrangements do not.

Very recently, Szamel and Flenner [31] measured the con-
tribution of global energy fluctuations to the canonical sus-
ceptibility Ay (k,7)=(kgT2/ Y[ OF,(k,1)/ITT, in a model
glass former with Brownian dynamics (here, ¢%" is the po-
tential energy contribution to the heat capacity, at constant
volume). Since Brownian dynamics are nonconservative,
KxiT)(k,t) does not represent a bound on the canonical
xa(k,t). However, the results of [31] show that while
A )(E‘T)(k,t) and the unconstrained susceptibility are not equal,
they are of the same order of magnitude for large k. We find
a similar situation in the (2)-TLG; in the WCA mixture then
the difference term A )(f?(k,t) is much smaller than the ca-
nonical susceptibility at these wave vectors.
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